XXXVI Всероссийская олимпиада школьников по физике

В апреле 2002 года в Волгограде прошел заключительный этап очередной Всероссийской физической олимпиады школьников. В нем участвовали 66 девятиклассников, 68 десятиклассников и 61 одиннадцатиклассник.

Ниже приводятся условия задач теоретического тура и список призеров олимпиады.

Теоретический тур

9 класс

Задача 1. Космический зонд

Космический зонд «Шумейкер» на некоторое время должен стать спутником астероида Эрос. По расчетам он будет обращаться вокруг астероида на высоте, составляющей n=1/15 радиуса Эроса, с периодом T=4,5 часа. Определите

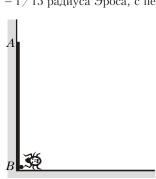


Рис. 1

предполагаемую среднюю плотность астероида ρ . Гравитационная постоянная $G=6,67\cdot 10^{-11}~{\rm H\cdot m^2/kr^2}$.

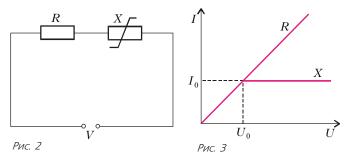
В.Белонучкин

Задача 2. Жук на палочке

У вертикальной стенки стоит палочка AB длиной L(рис.1). На ее нижнем конце B сидит жук. В тот момент, когда конец B начали двигать вправо по полу с постоянной скоростью v, жук пополз по палочке с постоянной скоростью u относительно нее. На какую максимальную высоту над полом поднимется жук за время своего движения по палочке, если ее верхний конец не отрывается от стенки?

С.Кузьмичев

Задача 3. Две проволоки


Две тонкие медные проволоки одинаковой длины соединили параллельно и подключили последовательно с лампочкой к источнику постоянного напряжения. Первая проволока нагрелась на 16 °C выше комнатной температуры, а вторая — в $\alpha=2$ раза меньше. На сколько градусов выше комнатной температуры нагреются проволоки, если их параллельное соединение заменить на последовательное? Сопротивление каждой из проволок много меньше сопротивления лампочки и источника, зависимость сопротивления проволок от температуры не учитывать.

В.Ефимов

Задача 4. Нелинейный элемент

Электрическая цепь (рис.2) состоит из резистора сопротивлением R и нелинейного элемента X, включенных последовательно. Вольт-амперные характеристики (BAX) элементов R и X известны (рис.3). На участке $0 \le U \le U_0$ BAX обоих элементов совпадают. На вход цепи подается некоторое напряжение V.

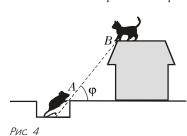
- 1) Определите, какая доля η_1 количества теплоты, выделяющегося в цепи, приходится на нелинейный элемент в случаях $V \leq 2U_0$ и $V = 4U_0$.
 - \tilde{Z}) Включим последовательно в цепь еще один элемент X.

Изобразите ВАХ двух последовательно включенных нелинейных элементов. Определите, какая доля η_2 количества теплоты, выделяющегося в цепи, приходится на оба нелинейных элемента в случае $V = 4U_0$.

3) А теперь подключим второй элемент X параллельно первому. Изобразите ВАХ двух параллельно включенных нелинейных элементов. Определите, какая доля η_3 количества теплоты, выделяющегося в цепи, приходится на оба нелинейных элемента в случае $V = 4U_0$.

 $A. Bахов, \ Л. Кулигин$

10 класс


Задача 1. Мощный автомобиль

Автомобиль массой m = 1 т движется по горизонтальной дороге. Коэффициент трения покрышек об асфальт $\mu = 0, 1$. Трения в осях нет. Сила сопротивления воздуха пропорциональна квадрату скорости автомобиля: $F_{
m comp} = k v^2$, где $k=0,2~{
m H\cdot c^2/m^2}$. Определите, как зависит максимальная скорость v_{max} , которую может развить автомобиль, от мощности N установленного на нем двигателя. Нарисуйте график этой зависимости для 0 < N < 100 кВт.

А. Чудновский

Задача 2. Кот Леопольд

Кот Леопольд сидел на самом краю крыши сарая. Два озорных мышонка решили выстрелить в него из рогатки, но кот заметил их и решил отстреливаться... Камни из рогаток

мышат и кота вылетели одновременно и столкнулись в середине отрезка AB (рис.4). Найдите высоту H сарая и отношение пути, пройденного камнем кота Леопольда, к пути, пройденному камнем мышат, если известно, что $\phi = 30^{\circ}$, скорость

камня, вылетевшего из рогатки мышат, $v_0 = 7 \text{ м/c}$, а кот выстрелил горизонтально.

В.Муравьев

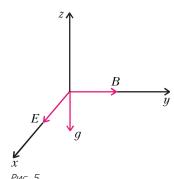
Задач 3. Морозильник

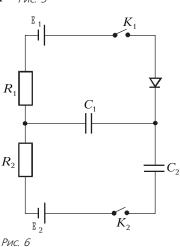
Летом при температуре в помещении $t_1 = 27$ °C промышленный морозильник при работе на полную мощность поддерживал температуру в камере $t_2 = -23~^{\circ}\mathrm{C}$. Зимой температура в помещении упала до значения $t_3 = 7~^{\circ}\mathrm{C}$. Из-за отказа реле агрегат вновь заработал на полную мощность. Какой при этом стала температура t_r в камере? Считайте агрегат идеальной машиной.

В.Белонучкин

Задача 4. В полях

Частица массой т с зарядом д движется с постоянной по модулю скоростью в области пространства, где имеются три взаимно перпендикулярных поля: электрическое с напряженностью \vec{E} , магнитное с индукцией \vec{B} и поле тяжести \vec{q}


(рис.5). В некоторый момент поля \vec{E} и \vec{B} выключают. Минимальная кинетическая энергия частицы в процессе движения составляет половину начальной. Найдите проекции скорости частицы на направления полей \overrightarrow{E} , \overrightarrow{B} и \vec{g} в момент выключения полей.


А.Шеронов

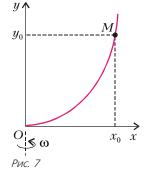
Задача 5. Схема с диодом

В цепи (рис.6) батарейки и диод идеальные. Ключи разомкнуты, конденсаторы разряжены. Сначала замыкают ключ K_1 . После завершения переходных процессов в цепи замыкают ключ K_2 . Найдите количества теплоты Q_1 и Q_2 , выделившиеся на резисторах R_1 и R_2 с момента замыкания ключа K_1 . Известно, что $\mathbf{E}_2 = 2\mathbf{E}_1 = 2\mathbf{E}$, $C_1 = C_2 = C$.

Д.Подлесный

11 класс

Задача 1. Бусинка


Гладкая проволока изогнута так, что если совместить ось Оу с одной ее частью, то другая часть проволоки будет совпадать с графиком функции $y = ax^3$ при x > 0 (рис.7). Проволока равномерно вращается вокруг вертикальной оси

Oy с угловой скоростью ω . На нее надета бусинка M, которая может скользить вдоль проволоки с пренебрежимо малым трением. Найдите координаты x_0 и y_0 равновесного положения бусинки и период Т малых колебаний относительно этого положения.

В.Муравьев

Задача 2. Бензиновая горелка

С помощью бензиновой горелки в помещении поддерживается температура $t_1 = -3$ °C при темпера-

туре на улице $t_2 = -23 \, ^{\circ}\mathrm{C}$. Предполагается использовать бензин в движке с КПД $\eta = 0,4$, а с помощью полученной механической энергии запустить тепловой насос, перекачивающий по идеальному холодильному циклу тепло с улицы в комнату. Какую температуру t_3 удастся в таком случае поддерживать в помещении при прежнем расходе бензина? Движок находится вне помещения.

В.Белонучкин

Задача 3. Коллекторный двигатель

Коллекторный двигатель питается от источника постоянного тока с напряжением U = 12 B. На холостом ходу сила тока через обмотки ротора $I_1=4~\mathrm{A}$. Когда ротор затормозили до полной остановки, сила тока увеличилась до $I_2 = 24 \text{ A}$. Какую наибольшую полезную механическую мощность можно получить с помощью этого электродвигателя, если магнитное поле в нем создается постоянными магнитами, а



Рис. 8

момент сил трения в подшипниках ротора не зависит от скорости его вращения и механической нагрузки?

В.Ефимов

Задача 4. Заряд на конденсаторе


С одной из пластин изначально незаряженного конденсатора мгновенно отделяется тонкий слой вещества, несущий заряд q. Затем он дви-

жется поступательно как целое с постоянной скоростью v по направлению к противоположной пластине (рис.8). Найдите зависимость тока в цепи от времени, пока слой движется в конденсаторе. Расстояние между пластинами конденсатора d, площадь поперечного сечения пластин S, индуктивность катушки L.

В.Можаев

Задача 5. Линза и крест

Говорят, что в архиве Снеллиуса нашли оптическую схему, на которой были изображены линза, предмет и его изображение. От времени чернила высохли, и остался только предмет на масштабной сетке (рис.9). Из текста следует, что предмет и изображение были одинаковых размеров и формы, а главная оптическая ось была параллельна неко-

торым линиям масштабной сетки. Восстановите оптическую схему (изображение, линзу, фокусы).

А. Чидновский

Призеры олимпиады

Дипломы I степени

по 9 классам получили

Моржаков Василий - Саратов, Лицей прикладных наук, Зосимов Андрей - Дубна, лицей «Дубна». Мостовых Павел – Санкт-Петербург, школа 306;

по 10 классам -

Фортунатов Антон - Долгопрудный, школа 5, Сунцов Евгений - Киров, ФМЛ,

Мохначевский Александр - Якутск, Республиканский кол-

Григорьев Дмитрий - Москва, Московская государственная Пятьдесят седьмая школа,

Каменских Марина - Пермь, ФМШ 146;

по 11 классам -

Кожухов Станислав - Уфа, лицей 153 при УГАТУ,

Постоев Андрей – Ейск, школа 11,

Ражев Михаил - Дубна, лицей «Дубна»,

Михайлов Виктор - Саратов, ФТЛ 1,

Антышев Евгений - Москва, СУНЦ МГУ,

Кондратьев Андрей - Саратов, ФТЛ 1,

Касаткин Алексей - Уфа, лицей «Содружество»,

Квасов Игорь – Дзержинск, школа 2,

Путров Павел – Санкт-Петербург, ФМЛ 239,

Гейко Василий - Нижний Новгород, лицей 87,

Николаев Сергей - Брянск, лицей 1,

Саидов Гаджи - Махачкала, лицей РМЛ.

Дипломы II степени

по 9 классам получили

Шавлюгин Евгений - Владивосток, школа 23, Желтов Алексей - Заречный Пензенской обл., лицей 230;

по 10 классам -

Родионов Павел - Москва, Московская государственная Пятьдесят седьмая школа,

Татаринов Айсен - Якутск, Республиканский колледж, Аверьянов Петр - Санкт-Петербург, ФТШ;

по 11 классам -

Печенежский Иван - Новосибирск, СУНЦ НГУ,

Говорун Андрей - Псков, Псковский технический лицей,

Бекшанов Сергей - Королев, лицей 4,

Копылов Сергей - Тамбов, Тамбовский областной физикоматематический лицей,

Панько Михаил - Сыктывкар, ФМЛ,

Самокотин Алексей - Челябинск, школа 31,

Коломоец Иван - Старый Оскол, школа 16,

Завьялов Андрей - Пермь, ФМШ 146,

Милютин Евгений - Новосибирск, СУНЦ НГУ,

Грубый Дмитрий - Фрязино, лицей,

Йдрисов Георгий – Бийск, лицей.

Дипломы III степени

по 9 классам получили

Буряк Александр - Москва, Московская государственная Пятьдесят седьмая школа,

Перчуков Юрий - Санкт-Петербург, ФТШ;

по 10 классам -

Лепешкин Сергей - Саратов, ФТЛ 1,

Циркин Степан - Омск, лицей «Бизнес и информационные технологии»;

по 11 классам -

Голубев Сергей - Астрахань, лицей 3,

Салицкий Игорь – Москва, СУНЦ МГУ, Рафиков Раиль – Ноябрьск, школа 10,

Магадеев Евгений – Уфа, гимназия 93,

Гурьянов Дмитрий – Рязанская обл., школа-интернат 2,

Ковязин Александр – Киров, ФМЛ,

Дудченко Владимир - Санкт-Петербург, АГУ,

Олюнин Николай - Пермь, ФМШ 146,

Строкотов Дмитрий - Бийск, лицей,

Цицинский Андрей - Иркутск, лицей ИГУ,

Московцев Антон - Смоленск, Смоленский педагогический лицей-интернат,

Дружинин Андрей – Ноябрьск, школа 10,

Киданов Вадим - Бийск, лицей,

Миргородский Иван – Северодвинск, лицей 17.

Публикацию подготовили С.Козел, В. Слободянин