8. Положим $S(n)=\sum_{i=1}^n \frac{1}{i}=\frac{A(n)}{B(n)}$, где A(n) и B(n) взаимно просты. Нам понадобится оценка B(n) > n/2.

Предположим, что при всех $n \ge n_0$ число A(n) является степенью простого. Пусть $p > n_0 + 5$ — простое число. Тогда A(p-1) делится на p (слагаемые суммы S(p-1) разбиваются на пары, для каждой из которых числитель суммы делится на p). Следовательно, $A(p-1) = p^k$, $k \in \mathbf{N}$.

Далее, докажем, что числитель $A(p^{n}-1)$ также кратен p (и, стало быть, является степенью p) при всех натуральных n. Проведем индукцию по n. База доказана. Переход $n-1 \to n$.

Имеем
$$S(p^n-1)=S(p^{n-1}-1)/p+S'$$
 , где $S'=\sum_{d\leq p^n-1,d:p}\frac{1}{d}$

(первое слагаемое как раз равно сумме слагаемых со знаменателями, делящимися на p). Сумма S' разбивается на несколько (а именно, p^{n-1}) сумм вида

$$\sum_{i=1}^{p-1} \frac{1}{pk+i} , \ k=0,1,\ldots,p^{n-1}-1 .$$

Каждая из них имеет числитель, делящийся на p, что устанавливается так же, как и для S(p-1). Осталось убедиться, что числитель дроби $S(p^{n-1}-1)/p$ делится на p. Действительно, $A(p^{n-1}-1)=p^s$ в силу индукционного предположения, причем s > 1 (вспомним, что $B(p^{n-1} - 1) \ge p^{n-1}/2 \ge p/2$, а $S(p^{n-1}-1) \ge S(n_0+4) \ge S(4) > 2$). Положим

$$H_p(n) = S(p^n - p) - S(p^n - 1) = \sum_{i=1}^{p-1} 1/(-p^n + i).$$

Если n > k, то числитель дроби $H_n(n)$ делится на p^k , но не на p^{k+1} (ибо $H_n(n) - S(p-1)$ – дробь, числитель которой делится на p^n). Отсюда получаем, что оба числителя $A(p^n-1)$ и $A(p^n-p)$ делятся на p, но один из них не делится на p^{k+1} . Значит, одна из дробей $S\left(p^n-1\right)$ и $S(p^{n}-p)$ не превосходит $\frac{2p^{k}}{(p^{n}-p)}<1$ при n=k+2 – про-

XXXVI Всероссийская олимпиада школьников по физике

Теоретический тур

1.
$$\rho = \frac{3\pi(1+n)^3}{GT^2} \approx 653 \text{ kg/m}^3$$
.

2. Решение этой задачи (а также некоторых других задач) будет опубликовано позже в «Задачнике «Кванта».

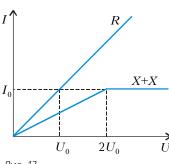


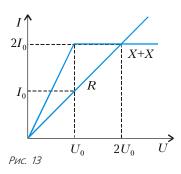
Рис. 12

4. 1) При
$$V \le 2U_0$$
 $\eta_1 = 0.5$; при $V = 4U_0$ $\eta_1 = 0.75$.
2) ВАХ получается сложением напряжений для каждого фиксированного значения силы тока (см. рис.12); $\eta_2 = 0.75$.
3) ВАХ получается сложением сил токов для каждого фиксированного значения напряжения (см.

рис.13); $\eta_3 = 0.5$.

10 класс

1. Есть предельная скорость v_0 , не зависящая от мощности. При этой скорости $F_{\text{сопр}} = F_{\text{тр max}}$, откуда $v_0 = \sqrt{\mu mq/k} \approx 71 \text{ M/c} \cdot \text{C}$ другой стороны, для поддержания постоянной скорости требуется мощность $N = F_{\text{comp}}v = kv^3$, откуда



 $v_{\mathrm{max}}\left(N\right) = \left(N/K\right)^{1/3}$. Скорость перестает расти начиная с мощности $N_0 = \mu mg \sqrt{\mu mg/k} \approx 70$ кВт.

2. $H \approx 2.8 \; \text{м}$; пройденные пути совпадают.

3. Искомую температуру найдем из квадратного уравнения $\frac{(T_1-T_2)^2}{\left(T_3-T_x\right)^2}=\frac{T_2}{T_x}$, откуда $T_{x1}=232~{\rm K}$, т.е. $t_{x1}=-41~^{\circ}{\rm C}$, а второй корень $T_{x2} = 338 \; {\rm K} \;$ не подходит – он отвечает работе агрегата в качестве теплового насоса.

5.
$$Q_1 = CE^2/2$$
, $Q_2 = CE^2/4$.

1.
$$x_0 = \frac{\omega^2}{3ag}$$
, $y_0 = \frac{\omega^6}{27a^2g^3}$; $T = \frac{2\pi}{\omega}\sqrt{1 + \frac{\omega^8}{9a^2g^4}}$.

НОМЕР ПОДГОТОВИЛИ

А.А.Егоров, Л.В.Кардасевич, С.П.Коновалов, А.Ю.Котова, В.А.Тихомирова, А.И.Черноуцан

НОМЕР ОФОРМИЛИ

В.Д.Акатьева, Д.Н.Гришукова, В.В.Иванюк, А.И.Пацхверия, Л.В.Тишков, П.И.Чернуский

ХУДОЖЕСТВЕННЫЙ РЕДАКТОР Е.В.Морозова

КОМПЬЮТЕРНАЯ ГРУППА Е.А.Митченко, Л.В.Калиничева

ЗАВЕДУЮЩАЯ РЕДАКЦИЕЙ Л.З.Симакова

Журнал «Квант» зарегистрирован в Комитете РФ по печати Рег. св-во №0110473

Адрес редакции:

119296 Москва, Ленинский проспект, 64-A, «Квант», тел. 930-56-48

Отпечатано на Ордена Трудового Красного Знамени Чеховском полиграфическом комбинате Комитета Российской Федерации по печати 142300 г. Чехов Московской области Заказ №