М1800. Докажите, что сумма квадратов площадей граней любого тетраэдра равна учетверенной сумме квадратов площадей трех его сечений, каждое из которых проходит через середины четырех ребер.

Сначала докажем следующее утверждение.

**Теорема косинусов для тетраэдра.** Пусть  $S_0$ ,  $S_1$ ,  $S_2$ ,  $S_3$ — площади граней тетраэдра,  $\alpha_{ij}$ — двугранный угол между гранями с площадями  $S_i$  и  $S_j$ . Тогда

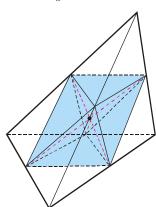
$$S_0^2 = S_1^2 + S_2^2 + S_3^2 - 2S_1 S_2 \cos \alpha_{12} -$$

$$- 2S_1 S_3 \cos \alpha_{13} - 2S_2 S_3 \cos \alpha_{23}.$$

Доказательство. Так как площадь любой грани тетраэдра равна сумме площадей проекцией на нее остальных граней, имеем

$$\begin{split} S_0 &= S_1 \cos \alpha_{01} + S_2 \cos \alpha_{02} + S_3 \cos \alpha_{03}, \\ S_1 &= S_0 \cos \alpha_{01} + S_2 \cos \alpha_{12} + S_3 \cos \alpha_{13}, \\ S_2 &= S_0 \cos \alpha_{02} + S_1 \cos \alpha_{12} + S_3 \cos \alpha_{23}, \\ S_3 &= S_0 \cos \alpha_{03} + S_1 \cos \alpha_{13} + S_2 \cos \alpha_{23}. \end{split}$$

Умножив второе равенство на  $S_1$ , третье на  $S_2$ , четвертое на  $S_3$  и вычтя из их суммы первое, умноженное на



 $S_0$ , получим утверждение

Теперь четырьмя плоскостями, параллельными граням тетраэдра и проходящими через середины его ребер, отрежем от него четыре вдвое меньших тетраэдра. Получим многогранник, ограниченный 8 треугольниками. Серединные сечения исходного тетраэдра разбивают этот многогранник на 8 тетраэдров, основания которых равны

уменьшенным вдвое граням исходного, а боковые грани – четвертям его серединных сечений (см. рисунок). Если применить к каждому из них теорему косинусов и сложить полученные равенства, то каждое из удвоенных произведений войдет в сумму с противоположными знаками, и в результате будет получено утверждение задачи.

А.Заславский

Ф1808. Траектория точки состоит из отрезка прямой АБ длиной L и полуокружности БВ радиусом R, причем прямая касается окружности (см. рисунок). За какое минимальное время точка проедет из А в В? Начальная скорость равна нулю, а ускорение все



Скорость движения точки по окружности при заданных в условии ограничениях не может превышать  $v_m = \sqrt{aR}$ . Следовательно, к моменту перехода на окружность необходимо иметь именно такую скорость (больше нельзя – не удержаться на окружности, а меньше - нет смысла). Для разгона по прямой от нуля до этой скорости нужно пройти путь  $L_0 = v_m^2/(2a) = R/2$ . Если  $L < L_0$ , то задача сильно усложняется - придется «доразгоняться» на окружности, а там касательная составляющая ускорения уже не постоянна (решение задачи про разгон на окружности – Ф1583 – см. в «Кванте» №3 за 1997 г.). При *L* > *L*<sub>0</sub> все довольно просто - нужно разогнаться до максимально возможной скорости, а затем начать торможение и к концу отрезка AB снизить скорость до  $v_m = \sqrt{aR}$ . Обозначим время дополнительного разгона через t(столько же займет и торможение). Тогда для этого времени t получим уравнение

$$\frac{1}{2}(L - L_0) = v_m t + \frac{1}{2}at^2,$$

откуда

$$t = \sqrt{\frac{L + R/2}{a}} - \sqrt{\frac{R}{a}} \ .$$

Теперь легко найти полное минимальное время движе-

$$T = \frac{L_0}{v_m/2} + 2t + \frac{\pi R}{v_m} = (\pi - 1)\sqrt{\frac{R}{a}} + 2\sqrt{\frac{L + R/2}{a}}.$$

А.Простов

Ф1809. Три маленьких груза массой М каждый соединены тонкими легкими стержнями длиной L, образуя треугольную конструкцию АБВ. Этот треугольник скользит по гладкому горизонтальному столу. В некоторый момент скорость точки А направлена вдоль АБ и равна v, а скорость точки Б в этот же момент параллельна БВ. Найдите скорость точки В и силу натяжения стержней.

Стол гладкий и горизонтальный, поэтому скорость центра масс системы АБВ постоянна и угловая скорость вращения тоже не меняется. Проекция скорости точки  $\mathcal{B}$  на  $\mathcal{A}\mathcal{B}$  равна проекции скорости точки  $\mathcal{A}$  на  $\mathcal{A}\mathcal{B}$ , тогда мгновенная скорость точки E равна  $v_E = 2v$ , а ее «перпендикулярная» составляющая равна  $2v \sin 60^\circ =$  $=v\sqrt{3}$ . В связанной с точкой A системе отсчета скорость точки Б определяется ее вращением вокруг A, т.е. равна  $v\sqrt{3}$ , такая же скорость вращения и у точки B (она направлена перпендикулярно AB). В неподвижной системе осталось сложить векторы  $\overrightarrow{v}$  и  $\overrightarrow{v}\sqrt{3}$ . Поскольку угол между ними равен 150°, по теореме косинусов квадрат искомой скорости равен  $\left(v^2+3v^2-2vv\sqrt{3}\cos 150^\circ\right)=7v^2$  . Тогда мгновенная скорость точки B равна  $v\sqrt{7}$ .

Угловую скорость вращения системы АБВ можно найти множеством разных способов. Рассмотрим, например, поворот отрезка AB за очень малый интервал времени. В поступательно движущейся со скоростью  $\upsilon$ вдоль направления AB системе отсчета точка A неподвижна, а скорость точки B равна  $v\sqrt{3}$  и перпендикулярна AB, тогда угловая скорость равна  $\omega = \left(v\sqrt{3}\right)/L$ .