где по-прежнему $0^{\circ} < \alpha \le \beta \le 180^{\circ} - \alpha - \beta$. Работы у нас явно прибавилось: если применять метод разбиения на области, который только что успешно сработал при поиске самого неравнобедренного треугольника, то одних только условий $\alpha = \beta - \alpha$, $\alpha = 180^{\circ} - \alpha - 2\beta$, ..., $90^{\circ} - \beta = |\alpha + \beta - 90^{\circ}|$ получается десять штук, к тому же все время мешается модуль!

Впрочем, от модуля избавиться легко: мы можем отдельно исследовать остроугольные и тупоугольные треугольники.

Неравнобедренный остроугольный треугольник. А вместо пяти величин можно рассмотреть всего лишь три! В самом деле, $\alpha > \alpha + \beta - 90^\circ$ и $90^\circ - \beta > \alpha + \beta - 90^\circ$ (докажите!). Поэтому

$$\Delta = \min(\alpha, \beta - \alpha,$$

$$180^{\circ} - \alpha - 2\beta, 90^{\circ} - \beta, \alpha + \beta - 90^{\circ}) =$$

$$= \min(\beta - \alpha, 180^{\circ} - \alpha - 2\beta, \alpha + \beta - 90^{\circ}).$$

На рисунке 14 изображен треугольник *KLN*, заданный неравенствами

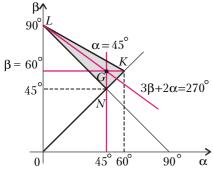


Рис. 14

 $0^{\circ} < \alpha \leq \beta < 90^{\circ}$ и $\alpha + \beta > 90^{\circ}$. Прямые, заданные уравнениями $\beta - \alpha = 180^{\circ} - \alpha - 2\beta$, $180^{\circ} - \alpha - 2\beta = \alpha + \beta - 90^{\circ}$ и $\beta - \alpha = \alpha + \beta - 90^{\circ}$, разбивают треугольник KLN на треугольник KLG, KNG и LNG. Максимального значения величина Δ достигает в точке $G(45^{\circ}; 60^{\circ})$ (убедитесь в этом!). Мы

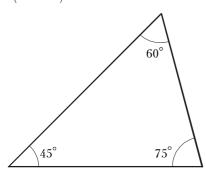


Рис. 15

нашли углы самого-самого неравнобедренного остроугольного треугольника: $\alpha = 45^{\circ}$, $\beta = 60^{\circ}$ и $\gamma = 75^{\circ}$ (рис. 15).

Неравнобедренный тупоугольный треугольник. В этом случае

$$\Delta = \min(\alpha, \beta - \alpha,$$

$$180^{\circ} - \alpha - 2\beta$$
, $90^{\circ} - \beta$, $90^{\circ} - \alpha - \beta$).

Поскольку $180^{\circ}-\alpha-2\beta>90^{\circ}-\alpha-\beta$ и $90^{\circ}-\beta>\alpha$, то опять достаточно рассматривать три величины:

$$\Delta = \min(\alpha, \beta - \alpha, 90^{\circ} - \alpha - \beta).$$

Дальше все, как обычно. На рисунке 16 изображен треугольник OLN, заданный неравенствами $0^{\circ} < \alpha \leq \beta$ и

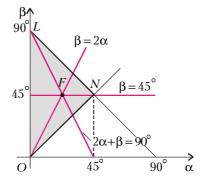


Рис. 16

 $\alpha+\beta<90^\circ$. Прямые, заданные уравнениями $\alpha=\beta-\alpha$, $\beta-\alpha=90^\circ-\alpha-\beta$ и $\alpha=90^\circ-\alpha-\beta$, разбивают его на треугольники OLF, ONF и LNF. Максимального значения величина Δ достигает в точке $F\left(22,5^\circ;45^\circ\right)$, так что мы опять нашли углы самого-самого неравнобедренного тупоугольного треугольника: $\alpha=22,5^\circ$, $\beta=45^\circ$ и $\gamma=112,5^\circ$ (рис. 17).

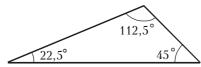


Рис. 17

Таблица наипроизвольнейших треугольников

Подведем итог нашего упорного (и, чего греха таить, малость скучноватого) труда:

А на практике?

Есть старая парламентская шутка: «Закон мы уже приняли, пора выяснить, можно ли его исполнить». К чему эти слова? К тому, что вдумчивый школьник, о котором шла речь в начале статьи, может спросить: «Если на уроке надо будет изобразить произвольный треугольник, то все остальные быстро и бездумно нарисуют его, а я буду транспортиром углы вымерять? Или циркуль схвачу? Засмеют!»

Возражение резонное — найденные нами треугольники должны быть еще и удобными для рисования в школьной тетради (без транспортира и циркуля!). Внезапно нас осеняет: в применяемых на уроках математики тетрадях имеется сетка со стороной 5 мм. Осталось подобрать нужные узлы этой сетки, соединить их — и ни транспортир, ни циркуль не потребовались!

Но воодушевление рискует смениться унынием: далеко не каждый угол можно построить, соединив узлы сетки. Впрочем, нужна ли нам абсолютная точность? Нет, не нужна!

Задача, таким образом, сменилась на поиск наилучших приближений некоторых иррациональных чисел рациональными. И здесь на помощь приходят (не входящие в обязательную школьную программу, но вовсе не бесполезные) цепные дроби.

Цепная дробь – это выражение вида

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \dots}}},$$

где $a_1,\,a_2,\,a_3,\,\dots$ – натуральные числа, а a_0 – целое число. Можно доказать, что любое рациональное число представляется в виде конечной цепной дроби, например

$$\frac{19}{17} = 1 + \frac{1}{8 + \frac{1}{2}},$$

а любое иррациональное число единственным образом разлагается в бес-

Прямо- угольный	Равнобедренный			Неравнобедренный	
	остроугольный		тупоугольный	остроугольный	тупоугольный
30°	67,5°	54°	30°	45°	22,5°
60°	67,5°	54°	30°	60°	45°
90°	45°	72°	120°	75°	112,5°