

5. $MA = MB = \frac{1}{\sqrt{3}}$. *Y* κa лежат на сфере, описанной около пирамиды

АВСИ, а также на единичной сфере с центром в точке C. Таким образом, эти четыре точки лежат на пересечении этих сфер, т.е. на окружности, описанной около равностороннего треугольника ABN; в частности, точка

M лежит в плоскости грани ABN. Пусть K – середина стороны *АВ* (рис.13). Тогда

$$MK = \frac{1}{2}r = \frac{1}{3}h = \frac{1}{2\sqrt{3}},$$

откуда

$$MA^2 = MB^2 = \frac{1}{4} + \frac{1}{12} = \frac{1}{3}.$$

Вариант 2

1. -39. Пусть a_1 — первый член последовательности, d — ее разность. Из соотношений

$$x=a_{_1}+6d \ \text{ и}\ \frac{a_{_1}+a_{_{17}}}{2}17=51$$
 получаем, что $x+2d=3$. Пусть $-6x=a_{_n}$. Тогда

$$n = \frac{7\frac{3-x}{2} - 7x}{\frac{3-x}{2}} = \frac{21(x-1)}{x-3}.$$

Поскольку при x < -20 верны неравенства

$$21 > \frac{21(x-1)}{x-3} > \frac{21 \cdot 21}{23} > 19$$
,

а число n – натуральное, то n = 20 и x = -39.

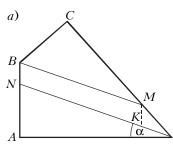
2.
$$2\pi k - \frac{5\pi}{6}$$
 и $\frac{2}{3}\pi k + \frac{5}{18}\pi$ при $k = 1, 2, ...;$ $-\frac{\pi}{18} - \frac{2}{3}\pi k$ и $\frac{\pi}{6} - 2\pi k$ при $k = 0, 1, ...$

3.
$$\left(\frac{4}{5}; \frac{9}{10}\right] \cup (1; 2]$$
. **4.** 3.

5. $CM=5\sqrt{3}$ и $DM=2\sqrt{3}$. Указание. Отрезки BM и DN параллельны. Проведем отрезок MK $\|AB\|$ (рис.14,a). Пусть

$$lpha = \angle MDN = \angle ADN$$
 . Тогда $\angle DMK = \frac{\pi}{2} - 2 lpha$,

 $\angle DKM = \frac{\pi}{2} + \alpha$. Четырехугольник BMKN — параллелограмм, так что MK = BN = 2. По теореме синусов находим из



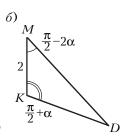


Рис. 14

треугольника DKM (рис.14,6), что $DK = \frac{2\cos 2\alpha}{\sin \alpha}$. Поскольку $ND\sin\alpha=6$, а ND=NK+KD=10+KD, то $6 = 10 \sin \alpha + 2 \cos 2\alpha$, откуда

$$\sin \alpha = \frac{1}{2}$$
.

Вариант 3

1. $[1-\sqrt{2};1+\sqrt{2}]$. Указание. Сделав замены $x=\sqrt{2}\cos t$ и $y = \sqrt{2} \sin t$, получим уравнение $\cos 2t + \sin 2t = a - 1$, которое имеет решения при $|a-1| \le \sqrt{2}$.

2.
$$-7/4$$
.
3. $\left[-1; -\frac{\pi}{4}\right] \cup \left(-\frac{\pi}{4}; 0\right) \cup \left[\frac{3}{2}; \frac{\pi}{2}\right)$. **4.** $\frac{1}{2} \sqrt[4]{\frac{c^2 S^2}{2S - c^2}}$.

Пусть 2a и 2b – длины сторон прямоугольника, d – расстояние от центра О окружности до диагонали АС. Суммируя площади треугольников ABO,

$$BOC$$
 и AOC , получим, что
$$\pm d\sqrt{a^2 + b^2} + ab + a^2 = 2ab$$

(знак «минус» соответствует случаю, когда точка О лежит вне треугольника ABC). Поэтому

$$d = \frac{\left|a^2 - ab\right|}{\sqrt{a^2 + b^2}},$$

$$c^{2} = 4(a^{2} - d^{2}) = \frac{8a^{3}b}{a^{2} + b^{2}}.$$

В данном случае $a=r,\ b=\frac{S}{4r}$, так что

$$\frac{S^2c^2}{16r^2} = 2S - c^2 \dot{\mathbf{j}}^2.$$

5. См. рис.15.

Санкт-Петербургский государственный технический университет

МАТЕМАТИКА

Вариант 1

1. 0,3. **2.** -1. **3.** -2. **4.** -1. **5.** 5. **6.** 0. **7.** $(1+\sqrt{5})/2$. **8.** $6-2\pi$. **9.** -2. **10.** $1/\sqrt{2} + \pi k \mathbf{C}$, $k \in \mathbf{Z}$. **11.** 0,1. **12.** $(-\infty; -1] \cup \{1\}$.

13. $(-\infty; -4] \cup [3; 4)$. **14.** ± 0.5 . **15.** (2; 1), $(3/\sqrt{2}; 0.5)$.

16. (-2; -1). **17.** (-1; 0), (0; 1). **18.** 16. **19.** $5\sqrt{3}$.

20. $a \in [1; -9]$

Знакомьтесь: факультет наук о материалах

МАТЕМАТИКА

2. $\frac{\pi}{4} + (-1)^n \frac{\pi}{3} + \pi n, \ n \in \mathbf{Z}$ **1.** {0; 1}.

3. $(-2; -1] \cup [2; 3)$. **4.** (3; 1/9). **5.** 2.

6. Утверждение неверно. **7.** 6 км/ч. **8.** 115 км/ч.

9. $\{-6; -5; -4\}$. **10.** x = 1 и y = 3.25(1 - x).

ФИЗИКА

1. $t = v_0(\sin \alpha \pm tg \beta \cos \alpha)/g$, $\beta \in [0; \alpha]$.

2. $P_{\text{MKB}}/P_{\text{HOJ}} = 1 - 4\pi^2 R^3/(GMT^2)$

3. $A = 0.5V_0$ $Q_0 - p_1$ $Q_0 - p_2 - p_3$ p_4