Знакомьтесь: факультет наук о материалах

Десть лет назад в Московском государственном университет им. М.В.Ломоносова на базе химического, физического и механико-математического факультетов был организован новый факультет: факультет наук о материалах (прежнее название - Высший колледж наук о материалах). Потребность в создании такого факультета давно витала в воздухе и ощущалась представителями разных направлений университетской науки. Тот факт, что материалы образуют фундамент цивилизации и что изучать их необходимо, никогда и ни у кого не вызывал сомнений, речь шла лишь о нахождении оптимальной формы обучения этой специальности.

Если исходить из того, что мы живем в материальном мире, то всю окружающую нас среду можно отнести к предмету изучения материаловедов, и в этом смысле к представителям этой науки с равным основанием принадлежат геологи, биологи, химики, физики и математики. Каждая из наук, развиваясь по собственным законам, выработала методики поиска и исследования новых явлений и материалов, формулировки рекомендаций к их практическому использованию. В чем же тогда необходимость синтеза этих разнообразных подходов и подготовки специалистов, владеющих приемами научного поиска каждой из этих дисциплин? Ответ на этот риторический вопрос можно дать на примере открытия и всестороннего экспериментального и теоретического исследования нового класса материалов - металлооксидных высокотемпературных сверхпроводников.

Сверхпроводники, хотя и не нашли пока столь широкого практического применения, как, например, ферромагнетики или полупроводники, являются одним из наиболее привлекательных объектов поиска ученых. Это связано, прежде всего, с их громадным потенциалом использования в самых разнообразных областях человеческой деятельности. Сверхпроводящие линии передачи и накопители энергии, поезда на магнитной подушке и электроника на сверхпроводниках – вот лишь некоторые примеры.

Изначально поиск сверхпроводящих материалов велся среди простых металлов, причем оказалось, что большинство из них действительно теряют

сопротивление при низких температурах. На следующем этапе рекордсменами по критической температуре перехода в сверхпроводящее состояние (T_C) оказались двойные (Nb_3Sn , Nb_3Ga) и тройные ($Nb_3(Al, Ge)$) интерметаллические соединения, однако эта температура едва превосходила температуру кипения жидкого водорода (; 20~K), что существенно ограничивало возможности их применения. Ситуация качественно изменилась с открытием сверхпроводимости в металлооксидах типа

$$\begin{split} & \text{YBa}_2\text{Cu}_3\text{O}_x \ (T_C \geq 90 \ \text{K}), \\ & \text{Bi}_2\text{Sr}_2\text{Ca}\text{Cu}_2\text{O}_x \ (T_C \geq 85 \ \text{K}), \\ & \text{Tl}_2\text{Ba}_2\text{Ca}_2\text{Cu}_3\text{O}_x \ (T_C \geq 110 \ \text{K}), \\ & \text{HgBa}_2\text{Ca}_2\text{Cu}_3\text{O}_x \ (T_C \geq 130 \ \text{K}). \end{split}$$

Материалы на основе иттрия, висмута, таллия и ртути теряют сопротивление при температурах, уже существенно превышающих температуру кипения общедоступного хладагента - жидкого азота (; 77 К). В результате такого повышения критической температуры экономически оправданным оказалось создание научной аппаратуры, работающей на высокотемпературных сверхпроводниках (в продажу поступили квантовые интерферометры - приборы для измерения магнитного поля), и в стадии реализации находится несколько крупномасштабных энергетических проектов, основанных на использовании металлооксидных сверхпроводников.

Открытие высокотемпературных сверхпроводников показало, что наибольших успехов в поиске и изучении этих материалов добились исследователи, сочетающие в своей работе приемы и методы, развитые в разных взаимодополняющих областях науки и технологии. Традиционно синтез и исследование новых материалов принадлежали химии. Вместе с тем, сверхпроводимость как квантовое кооперативное явление считалось предметом изучения в физике. Причем в обеих областях эффективный научный поиск опирается на современную математику.

Все сказанное о высокотемпературных сверхпроводниках в той же степени может быть отнесено и ко многим другим многофункциональным материалам с необычными свойствами – биополимерам, фуллеренам, сплавам с памятью формы, нанокомпозитам и т.д. Сочетание тонких методов синтеза и анализа химических соединений с мощным аппаратом эксперименталь-

ной и теоретической физики и математики предопределило развитие новых направлений в науке и материалах.

Создание факультета наук о материалах (ФНМ) явилось ответом на веление времени и позволило найти такую форму подготовки специалистов, которая дает им навыки экспериментальной и теоретической работы химиков, физиков и математиков. Главным принципом преподавания на новом факультете (как и ранее в Высшем колледже наук о материалах) является междисциплинарность. В процессе обучения студенты овладевают:

- обширной фактической базой материаловедения с акцентом на химические аспекты создания и использования материалов, что подразумевает фундаментальную подготовку по основным разделам химии;
- теорией физических явлений, определяющих свойства материалов, что предполагает фундаментальную подготовку по физике конденсированного состояния вещества;
- базовыми знаниями по основным разделам высшей математики;
- компьютерными методами современного химического и физического эксперимента;
- знанием иностранных языков, позволяющим работать в интернациональных коллективах;
- необходимым для современного человека гуманитарным кругозором;
- достаточными для практической работы знаниями в области экономики, маркетинга и менеджмента.

Начиная с первого курса студенты факультета наук о материалах имеют уникальную возможность заниматься научной работой под индивидуальным руководством опытных ученых химического, физического и механико-математического факультетов МГУ или академических институтов, проводить самостоятельные поисковые исследования. По результатам этих работ каждый семестр на факультете наук о материалах организуются студенческие научные конференции. Студенты имеют возможность также стажироваться в ведущих учебных и научных заведениях Европы, Азии и Америки, где специализация «Materials Science» давно стала синонимом передового края фундаментальных и прикладных исследований.

Ежегодный прием студентов на факультет наук о материалах составляет 25 человек, срок обучения — пять с половиной лет. Обучение бесплатное, все студенты получают стипендию, а