

случае расстояние от линзы до воспринимаемого человеком изображения рисунка равно расстоянию наилучшего зрения D = 25 см, изображение рисунка является мнимым, а сам рисунок находится от лупы на расстоянии

$$d = FD / (F+D) \approx$$

$$\approx bD / (b+D).$$
 Отсюда найдем искомое

Рис. 9

увеличение рисунка:

$$\Gamma = \frac{D}{d} \approx 1 + \frac{D}{b} = 6.$$

10. Используя обозначения на рисунке 9, найдем, что разность хода идущих в направлении на *n*-й максимум лучей 1 и 2 равна $\Delta = CD - AB = d(\sin(\alpha + \varphi_n) - \sin \alpha)$. В то же время эта разность хода должна быть равна $n\lambda$. Если угол между направлением падающего пучка и направлением на первый максимум обозначить ф., получим

$$\lambda_{c} = d \sin(\alpha + \varphi_{1} + \Delta \varphi) - \sin(\alpha + \varphi_{1}),$$

или, учитывая малость углов $\phi_{_1}$ и $\Delta\phi$,

$$\lambda_{c} = d \cos \alpha \cdot \Delta \varphi$$

Рассуждая аналогично, можно показать, что угловое расстояние бо между направлениями на максимумы третьего порядка желтого дублета ртути должно удовлетворять уравнению

$$3\delta\lambda_{*} = d\cos\alpha \cdot \delta\varphi$$
.

Решая совместно два последних уравнения, определим искомую разность длин волн:

$$\delta \lambda_{\text{w}} = \lambda_{\text{c}} \delta \phi / (3\Delta \phi) = 2.1 \text{ Hm}.$$

Факультет вычислительной математики и кибернетики

1.
$$v_0 = \sqrt{2(H-h)(g-a)} = 6 \text{ m/c}.$$

2.
$$l_1 = \frac{(M-m)l_0 + 2ml}{M+m} = 14 \text{ cm}.$$

3.
$$F = m\sqrt{g^2 + \omega^4 l^2 \sin^2 \phi} \approx 1.01 \text{ H}.$$

4.
$$A = \frac{mg}{4} \frac{L^2 + 4(H - h)^2}{H - h} = 8 \text{ Дж.}$$

5. $\alpha = 1/2$, кинетическая энергия уменьшится в 2 раза.

6.
$$A = \frac{R(T - T_1)^2}{T_1} \approx 11,07$$
 Дж.
7. $U_{MN} = \frac{ER}{R + 3r} \approx 1,54$ В.

7.
$$U_{MN} = \frac{\stackrel{1}{\text{E}R}}{P + 3r} \approx 1,54 \text{ B}$$

8.
$$B = E \sqrt{\frac{m}{2W_{\nu}}} \approx 3.2 \cdot 10^{-3}$$
 Тл, магнитное поле перпендику-

лярно плоскости рисунка и направлено на читателя.

9.
$$\gamma = 2\alpha - 2\arcsin\left(\frac{1}{n}\sin\alpha\right) = 30^\circ$$
.

10.
$$r = R \left(\frac{b}{F} - \frac{b}{d} - 1 \right) = 1 \text{ cm.}$$

Химический факультет

1.
$$\mu = \frac{h_1 - h_2}{h_1 + h_2} \operatorname{tg} \alpha = 0.25.$$
 2. $T = (m_2 - m_1) g/2 = 1 \text{ H.}$

2.
$$T = (m_2 - m_1)g/2 = 1$$
 H

3.
$$v = v_0 (v + u)/u = 1.75 \Gamma_{\text{II}}$$
.

3.
$$v = v_0(v + u)/u = 1,75 \text{ }\Gamma\text{II}.$$
 4. $Q = mg(H - g\Delta t^2/8) = 2 \text{ }\text{Дж}.$

5.
$$p = 2p_1p_2/(p_1 + p_2) = 2.4 \cdot 10^5 \text{ Ha}.$$

6.
$$q_3 = \mathbb{E}C_3(C_1 + C_2)/(C_1 + C_2 + C_3) = 9$$
 мкКл.

7.
$$n^+ = nM/(\rho N_A) \approx 6.6 \cdot 10^{-10}$$
. 8. $r = U_a^2/(2P) - R = 8$ Om.

9.
$$E = \sqrt{\left(\frac{a}{q/m}\right)^2 - (vB)^2} = 8 \text{ kB/m}.$$

10.
$$d_1 - d_2 = 2/(\Gamma D) = 0.1 \text{ M}.$$

Информацию о журнале «Квант» и некоторые материалы из журнала можно найти в ИНТЕРНЕТЕ по ад-

Курьер образования http://www.courier.com.ru

Vivos Voco!

http://www.techno.ru/vivovoco

(раздел «Из номера»)

номер подготовили

А.А.Егоров, Л.В.Кардасевич, С.П.Коновалов, А.Ю.Котова, В.А.Тихомирова, А.И.Черноуцан

номер оформили

Ю.А.Ващенко, В.В.Власов, Д.Н.Гришукова, В.В.Иванюк, А.И.Пацхверия, М.А.Сумнина, В.М.Хлебникова, П.И.Чернуский

ХУДОЖЕСТВЕННЫЙ РЕДАКТОР Е.В.Морозова

КОМПЬЮТЕРНАЯ ГРУППА Е.А.Митченко, Л.В.Калиничева

ЗАВЕДУЮЩАЯ РЕДАКЦИЕЙ Л.З.Симакова

Журнал «Квант» зарегистрирован в Комитете РФ по печати. Рег. св-во №0110473

Адресредакции:

117296 Москва, Ленинский проспект, 64-A, «Квант», тел. 930-56-48

Отпечатано на Ордена Трудового Красного Знамени Чеховском полиграфическом комбинате Комитета Российской Федерации по печати 142300 г. Чехов Московской области Заказ №