

Рис. 4

F(x)=0, корнями которого являются длины a,b,c его сторон, и доказать, что оно имеет три положительных решения, причем эти решения должны удовлетворять «неравенствам треугольника» для сторон (a < b + c и т.д.). Часто удобнее иметь дело не с самими сторонами, а с отрезками, на которые они разбиваются точками касания вписанной окружности. Любые два таких отрезка, выходящих из одной вершины, равны по теореме о касательных; обозначим их a_1 (для отрезков, выходящих из A), b_1 и c_1 (рис.4).

Упражнение 4. Покажите, что а) $a_1 = (b+c-a)/2 = p-a$, $b_1 = p-b$ и $c_1 = p-c$; 6) треугольник с заданными величинами a_1 , b_1 и c_1 существует (и однозначно определен) при *любых* положительных значениях этих величин.

Таким образом, перейдя от сторон к отрезкам a_1 , b_1 , c_1 , мы избавляемся от необходимости заботиться о неравенстве треугольника.

Итак, рассмотрим кубический многочлен $F_1(x)$ с корнями a_1 , b_1 , c_1 :

$$F_{1}(x) = (x - a_{1})(x - b_{1})(x - c_{1}) =$$

$$= x^{3} - (a_{1} + b_{1} + c_{1})x^{2} +$$

$$+ (a_{1}b_{1} + b_{1}c_{1} + c_{1}a_{1})x - a_{1}b_{1}c_{1}.$$

Выразим его коэффициенты через радиусы R, r и периметр 2p треугольника. Очевидно, $a_1+b_1+c_1=3p-(a+b+c)=p$. Пользуясь формулой Герона и формулой S=rp для площади треугольника, вычислим свободный член:

$$a_1b_1c_1 =$$

= $(p-a)(p-b)(p-c) = S^2/p = r^2p$.

Наконец, коэффициент при x можно найти, вычислив $F_1(p)$:

$$F_1(p) = (p - a_1)(p - b_1)(p - c_1) = abc =$$

$$= p^3 - p \cdot p^2 + (a_1b_1 + b_1c_1 + c_1a_1)p - r^2p.$$

Из формул
$$S=pr$$
 и $S=\frac{abc}{4R}$ получаем
$$abc=4Rrp, \hspace{1cm} (4)$$

откуда

$$a_1b_1 + b_1c_1 + c_1a_1 = r^2 + 4Rr$$

и «уравнение треугольника» принимает вил

$$F_1(x) = x^3 - px^2 +$$

$$+ (r^2 + 4Rr)x - r^2p = 0. (5)$$

Нам нужно найти коэффициенты этого уравнения в нашей задаче и доказать его разрешимость.

Упражнение 5. Проведите аналогичное рассуждение для многочлена $F(x) = (x - a)(x - b)(x - c) = x^3 - (a + b + c)x^2 + (ab + bc + ca)x - abc$. Докажите, что $F(x) = x^3 - 2px^2 + (r^2 + 4Rr + p^2)x - 4Rrp$.

В алгебре коэффициенты многочлена F(x) – выражения a + b + c, ab + c+ bc + ca и abc — называют элементарными симметрическими (т.е. не меняющимися при перестановке переменных) многочленами от трех переменных $(a, b \ u \ c)$. Через них можно выразить любой симметрический многочлен от а, b, c. Поэтому любую величину в треугольнике, имеющую геометрический смысл (т.е. одинаковую для равных треугольников, а значит, не меняющуюся при перестановке сторон) и выражаемую многочленом от длин сторон, можно записать через радиусы вписанной и описанной окружностей и периметр. Ниже мы встретимся с несколькими такими выражениями.

Упражнение 6. Для треугольника *ABC* докажите, что
a) $a^2 + b^2 + c^2 = 2p^2 - 8Rr - 2r^2$;
6) $a_1^2 + b_1^2 + c_1^2 = p^2 - 8Rr - 2r^2 = a^2 + b^2 + c^2 - p^2$;
B) $ab^2 + a^2b + bc^2 + b^2c + ca^2 + c^2a = 2p(r^2 - 2Rr + p^2)$.

Условие на центроид

Обратимся непосредственно к треугольнику, который рассматривается в нашей задаче. Выразим с помощью формулы Лейбница расстояние IG от центра I вписанной окружности до центроида G. Расстояние IA найдем из прямоугольного треугольника AIK (см. рис.4), где K — точка касания вписанной окружности треугольника ABC со стороной AB. Поскольку $AK = a_1 = p - a$ (см. упражнение 4), то $IA^2 = a_1^2 + r^2$. Аналогично выражаются величины IB^2 и IC^2 . Поэтому (см. упражнение 6)

$$IG^{2} = (a_{1}^{2} + r^{2} + b_{1}^{2} + r^{2} + c_{1}^{2} + r^{2})/3 -$$
$$-(a^{2} + b^{2} + c^{2})/9 = (p^{2} - 16Rr + 5r^{2})/9.$$

Значит, центроид треугольника лежит на вписанной окружности (IG = r) тогда и только тогда, когда

$$p^2 = 16Rr + 4r^2. (6)$$

Заметим, что при этом условии «уравнение треугольника» (5) упрощается:

$$x^{3} - px^{2} + (p^{2}/4)x - r^{2}p = 0$$
,

а после замены x = pu/2 становится совсем «хорошим»:

$$u(u-1)^2 = 8(r/p)^2$$
. (5')

Условие на ортоцентр

Мы хотим найти треугольник, в котором и *ортоцентр лежит на вписанной окружности*, т.е. IH = IG = r. В задачах, где идет речь одновременно о центроиде и ортоцентре, почти неизбежно на арене появляется еще одна замечательная точка треугольника — центр описанной окружности O. Наша задача — не исключение.

Упражнение 7. Докажите, что в любом треугольнике

a)
$$\vec{OH} = \vec{OA} + \vec{OB} + \vec{OC}$$
;

6)
$$\overrightarrow{OI} = \frac{a\overrightarrow{OA} + b\overrightarrow{OB} + c\overrightarrow{OC}}{a + b + c}$$
, иначе гово-

ря, центр I вписанной окружности есть центр масс системы масс $a,\ b,\ c,$ помещенных в вершинах $A,\ B,\ C$ соответственно;

B)
$$\overrightarrow{IH} = \left(1 - \frac{a}{2p}\right)\overrightarrow{OA} +$$

 $+ \left(1 - \frac{b}{2p}\right)\overrightarrow{OB} + \left(1 - \frac{c}{2p}\right)\overrightarrow{OC}$.

Упражнение 8. Покажите, что в любом треугольнике

$$IH^{2} = 4R^{2} + 4Rr + 3r^{2} - p^{2}.$$
 (7)

Подставим в равенство (7) IH = r, выразим из него p^2 и приравняем это выражение к правой части (6):

$$p^2 = 4R^2 + 4Rr + 2r^2 = 16Rr + 4r^2$$

Отсюда получаем важное соотношение между радиусами вписанной и описанной окружностей искомого треугольника:

$$r^2 + 6Rr - 2R^2 = 0. (8)$$

Малость, которой хватает

Возьмем для определенности R=1, тогда из последнего уравнения получим $r=\sqrt{11}-3$ (второй корень уравнения (8) отрицательный), а из предпоследнего $-p^2=8(4-\sqrt{11})$. Подста-