M1650*. На плоскости нарисован граф без циклов Γ . Известно, что граф Γ' , полученный из Γ параллельным переносом на вектор (1, 0), не пересекается c Γ . На графе Γ отмечены две различные точки A u B, в которых в начальный момент времени сидели два жука. Ползая по графу, жуки через некоторое время снова оказались в точках A u B, но при этом поменялись местами. Докажите, что в некоторый момент времени расстояние между жуками было меньше 1.

Итак, пусть жуки образуют пару (x, y), т.е. первый находится в точке x, второй — в точке y. Нам надо доказать, что, двигая жуков, как указано в задаче, мы не можем из пары (x, y) получить пару (y, x). Для этого мы придумаем такую функцию от x, y, что она непрерывна по x и y, для всех разрешенных положений x и y она не равна нулю, и если для пары (x, y) она больше нуля, то для пары (y, x) — меньше. Тогда, очевидно, из пары (x, y) нельзя получить пару (y, x).

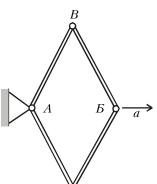
Построим требуемую функцию. Нарисуем на плоскости графы Γ и Γ' (перенос графа Γ на вектор \overrightarrow{a}). Представим себе, что из x в y по графу Γ проползла жужелица, а из y' в x' по графу Γ' одновременно с жужелицей прополз таракан. Посмотрим, на какой угол при этом повернулся вектор \overrightarrow{KT} (угол считаем ориентированным: угол поворота корректно определен, поскольку вектор \overrightarrow{KT} всегда не ноль). Можно показать, что величина этого угла зависит только от точек x и y, т.е. не зависит от конкретного способа, которым ползли жужелица и таракан.

Докажем, что указанный угол непрерывно зависит от x и y. В самом деле, возьмем точку x_1 и представим себе, что жужелица сначала проползла из x_1 в x, таракан при этом стоял, а потом жужелица проползла их x в y, а таракан — из y' в x'. Поворот вектора $\overrightarrow{\mathrm{MT}}$ на первом этапе непрерывно зависит от x_1 . Аналогичное рассуждение подходит и для y.

Теперь докажем, что если расстояние между x и y больше 1, то поворот вектора не равен нулю. В самом деле, точки $x,\ y,\ y',\ x'$ образуют параллелограмм, следовательно, если векторы $\overrightarrow{xy'}$ и $\overrightarrow{yx'}$ сонаправлены, имеем $\overrightarrow{xy'}=\overrightarrow{xy}+\overrightarrow{a},\ \overrightarrow{yx'}=-\overrightarrow{xy}+\overrightarrow{a},\$ значит, \overrightarrow{xy} должен быть коллинеарен с \overrightarrow{a} и меньше \overrightarrow{a} по модулю. Доказательство завершено.

А.Скопенков, Г.Челноков

Ф1658. Из четырех одинаковых тонких стержней длиной L каждый сделали ромб, скрепив их концы шарнирно (см. рисунок). Шарнир A закреплен, проти-



воположный шарнир Б двигают вдоль диагонали ромба с постоянным ускорением а. Вначале упомянутые противоположные вершины находятся близко друг к другу, а скорость точки Б равна нулю. Какое ускорение будет иметь шарнир В в тот момент, когда стержни АВ и ВБ составят угол 20.? Считайте движение всех точек плоским.

Ускорение точки B по горизонтали — в направлении движения шарнира E — равно половине ускорения этого шарнира, т.е. 0,5 a. Обозначим вертикальную составляющую ускорения шарнира B буквой b. Если мы найдем эту величину, задача будет практически решена.

Для нахождения величины b заметим, что точка B движется по окружности радиусом L, и мы можем воспользоваться формулой для центростремительного ускорения. Но для этого нужно знать скорость точки B в интересующий нас момент времени. Найдем вначале скорость точки B: длина пройденного этой точкой пути равна $2L \sin \alpha = a \tau^2/2$, откуда $v_{\mathcal{B}} = a \tau = \sqrt{4aL \sin \alpha}$. Скорость точки B — обозначим ее величину через u — перпендикулярна стержню AB, а ее горизонтальная составляющая $(u\cos\alpha)$ равна $0.5v_{\mathcal{B}} = 0.5\sqrt{4aL\sin\alpha} = \sqrt{aL\sin\alpha}$. Отсюда получаем

$$u = \frac{\sqrt{aL\sin\alpha}}{\cos\alpha}$$

Для нахождения величины b используем центростремительную составляющую ускорения точки B:

$$b\cos\alpha - \frac{1}{2}a\sin\alpha = \frac{u^2}{L} = \frac{aL\sin\alpha}{L\cos^2\alpha},$$

откуда

$$b = a \left(\frac{1}{2} + \frac{1}{\cos^2 \alpha} \right) \operatorname{tg} \alpha = a \left(\frac{3}{2} + \operatorname{tg}^2 \alpha \right) \operatorname{tg} \alpha.$$

Мы нашли обе составляющие ускорения шарнира B. Его полное ускорение равно

$$a_B = \sqrt{b^2 + \frac{a^2}{4}}.$$

3.Рафаилов

Ф1659. Тележка массой т движется по горизонтально расположенным рельсам со скоростью v (см. рисунок).

Рельсы дальше идут вниз и плавно переходят в новый горизонтальный участок, находящийся на Н ниже. Тележка наезжает на неподвижный вагон массой М, сто-

ящий на нижнем горизонтальном участке, и между тележкой и вагоном происходит абсолютно упругий удар. При какой начальной скорости v тележка после удара вновь сможет подняться на верхний горизонтальный участок? Трение отсутствует.

Скорость спустившейся тележки найдем из закона сохранения энергии: $u_1 = \sqrt{v^2 + 2gH}$. Для того чтобы подняться обратно на горку, тележка должна иметь в направлении горки скорость не меньшую чем $u_2 = \sqrt{2gH}$. Это возможно только в том случае, когда масса налетающей тележки меньше массы неподвижного вагона, — в противном случае оба тела после упругого удара будут удаляться от горки.

Рассмотрим граничный случай — скорость тележки наверху равна минимально необходимой для выполнения условия задачи. Тогда скорость тележки после удара в точности равна u_2 . Из закона сохранения импульса найдем