Следующие две задачи были предложены на XXII и XXIII Международных математических олимпиадах.

Задача 7. Из точки M внутри данного треугольника ABC отложены перпендикуляры MA_1, MB_1, MC на прямые BC, CA, AB. Для каких почек M величина

$$
BC + CA + AB = \frac{MA_1}{MA} + \frac{MB_1}{MB} + \frac{MC_1}{MC}
$$

принимает наименьшее значение?

Решение. Преобразуем выражение и применим неравенство (4):

$$
\frac{BC^2}{MA_1} + \frac{CA^2}{MA} + \frac{AB^2}{MB} \geq \frac{(BC + CA + AB)^2}{MA + MB + MC} = \frac{2P^2}{2S} = 2P.
$$

Следовательно, наименьшее значение

$$
BC + CA + AB = \frac{MA_1}{MA} + \frac{MB_1}{MB} + \frac{MC_1}{MC}
$$

будет равно $2P$, при $BC = \frac{CA}{MA} = \frac{AB}{MB}$, т.е. при $MA_1 = MB_1 = MC_1$; следовательно, M — центр вписанной окружности.

Задача 8. Рассматривается последовательность (x_n) положительных чисел, удовлетворяющих условию $1 = \sum x_n = x_1 \geq x_2 \geq \ldots \geq x_n \geq \ldots$. Докажите, что для любой такой последовательности существует n, при котором

$$
\sum_{i=1}^{n} x_i \geq 3,999.
$$

Решение. Применя неравенство (4), получим

$$
\sum_{i=1}^{n} x_i \geq \sum_{i=1}^{n} x_i \geq \frac{(x_1 + x_2 + \ldots + x_n)^2}{x_1 + x_2 + \ldots + x_{n-1} + x_n} = K_n.
$$

Докажем, что существует натуральное n_0, для которого, при $n > n_0$, $K_n \geq 3,999$. Действительно,

$$
(x_1 + x_2 + \ldots + x_n + x_{n+1})^2 = 3,999(x_1 + x_2 + \ldots + x_{n-1} + x_n) = 0,001(x_1 + x_2 + \ldots + x_n)^2 - 3,999x_n \geq 0,001(n-1)x_n - 3,999x_n \geq 0.
$$

Задача 9. Если a_1, a_2, \ldots, a_n — стороны n-угольника ($n \geq 3$), то

$$
q \geq \frac{p - 2a_1}{p - 2a_2} \geq \ldots \geq \frac{p - 2a_n}{p - 2a_n}
$$

где $p = a_1 + a_2 + \ldots + a_n$.

Решение. Без ограничения общности можно допустить, что $a_1 \geq a_2 \geq \ldots \geq a_n$, тогда $p - 2a_1 \leq p - 2a_2 \leq \ldots \leq p - 2a_n$.

Имея в виду замечание к неравенству (5), получим,

$$
\frac{1}{n} \sum a_i \geq \frac{1}{n} \sum b_i \geq \frac{1}{n} \sum c_i \geq \ldots \geq \frac{1}{n} \sum d_i
$$

при условии $0 \leq a_1 \leq a_2 \leq \ldots \leq a_n$, $0 \leq b_1 \leq b_2 \leq \ldots \leq b_n$, $0 \leq c_1 \leq c_2 \leq \ldots \leq c_n$, $0 \leq d_1 \leq d_2 \leq \ldots \leq d_n$.

Решение. Применя неравенство Чебышева:

$$
\left(\frac{1}{n} \sum a_i \right) \left(\frac{1}{n} \sum b_i \right) \left(\frac{1}{n} \sum c_i \right) \ldots \left(\frac{1}{n} \sum d_i \right) \leq \left(\frac{1}{n} \sum a_i b_i c_i \ldots d_i \right) \leq \frac{1}{n} \sum a_i = \frac{1}{n} \sum b_i \leq \frac{1}{n} \sum c_i \leq \ldots \leq \frac{1}{n} \sum d_i.
$$

Задача 10. Пусть C — центр тяжести треугольника $A_1A_2A_3$. Пусть C — описанная окружность, G_1 пересекает C в точке B_1. Точки B_1 и B_2 определяются аналогично. Докажите неравенство

$$
G_1 + G_2 + G_3 \leq GB_1 + GB_2 + GB_3.
$$

Решение. Через A_1', A_2', A_3' и a_1, a_2, a_3 обозначим середины и длины сторон A_1A_2, A_2A_3, A_3A_1 соответственно.

Пусть $a_1 \leq a_2 \leq a_3$, тогда легко убедиться, что $G_3 \leq G_2 \leq G_1$.

Имеем: $\frac{3}{2} G_1B_1 A_1 = a_2$, отсюда

$$
G_2 = \frac{1}{2} G_1 + \frac{a_2^2}{6G_1}.
$$

Итак, достаточно доказать, что

$$
\frac{a_1^2 + a_2^2}{3G_1} + \frac{a_3^2}{3G_3} \geq \frac{a_1 + a_2 + a_3}{3G_1 + 3G_2 + 3G_3} \geq G_1 + G_2 + G_3.
$$

Задача 11. Докажите неравенство

$$
\left(\frac{1}{n} \sum a_i \right) \left(\frac{1}{n} \sum b_i \right) \left(\frac{1}{n} \sum c_i \right) \ldots \left(\frac{1}{n} \sum d_i \right) \leq \left(\frac{1}{n} \sum a_i c_i \ldots d_i \right) \leq \frac{1}{n} \sum a_i = \frac{1}{n} \sum b_i \leq \frac{1}{n} \sum c_i \leq \ldots \leq \frac{1}{n} \sum d_i.
$$